An On-the-fly Evolutionary Algorithm for Robot Motion Planning
نویسندگان
چکیده
Computation of a collision-free path for a movable object among obstacles is an important problem in the fields of robotics. The simplest version of motion planning consists in generating a collisionfree path for a movable object among known and static obstacles. In this paper, we introduce a two stages evolutionary algorithm. The first stage is designed to compute a collission-free path in a known environment. The second stage is designed to make on-the-fly updates of the robot current path according to the environment dynamic modifications. Evolutionary techniques have shown to be useful to both quickly compute a new path and to take advantage of the initial path from the first stage. The tests have been made using the Khepera simulator and a Lego Midstorms
منابع مشابه
Study of Evolutionary and Swarm Intelligent Techniques for Soccer Robot Path Planning
Finding an optimal path for a robot in a soccer field involves different parameters such as the positions of the robot, positions of the obstacles, etc. Due to simplicity and smoothness of Ferguson Spline, it has been employed for path planning between arbitrary points on the field in many research teams. In order to optimize the parameters of Ferguson Spline some evolutionary or intelligent al...
متن کاملMobile Robot Online Motion Planning Using Generalized Voronoi Graphs
In this paper, a new online robot motion planner is developed for systematically exploring unknown environ¬ments by intelligent mobile robots in real-time applications. The algorithm takes advantage of sensory data to find an obstacle-free start-to-goal path. It does so by online calculation of the Generalized Voronoi Graph (GVG) of the free space, and utilizing a combination of depth-first an...
متن کاملOptimal Trajectory Planning of a Box Transporter Mobile Robot
This paper aims to discuss the requirements of safe and smooth trajectory planning of transporter mobile robots to perform non-prehensile object manipulation task. In non-prehensile approach, the robot and the object must keep their grasp-less contact during manipulation task. To this end, dynamic grasp concept is employed for a box manipulation task and corresponding conditions are obtained an...
متن کاملDesigning an Optimal Stable Algorithm for Robot Swarm Motion toward a Target
In this paper, an optimal stable algorithm is presented for members of a robots swarm moving toward a target. Equations of motion of the swarm are based on Lagrangian energy equations. Regarding of similar research On the design of swarm motion algorithm, an equation of motion considered constraints to guarantee no collision between the members and the members and obstacles along the motion pat...
متن کاملDynamics modeling and stable gait planning of a quadruped robot in walking over uneven terrains
Quadruped robots have unique capabilities for motion over uneven natural environments. This article presents a stable gait for a quadruped robot in such motions and discusses the inverse-dynamics control scheme to follow the planned gait. First, an explicit dynamics model will be developed using a novel constraint elimination method for an 18-DOF quadruped robot. Thereafter, an inverse-dynamics...
متن کامل